GCE MARKING SCHEME

CHEMISTRY
 AS/Advanced

SUMMER 2011

CHEMISTRY - CH5

Q. 1 (a) Reacts with both acids and bases / behaves as an acid and a base.
(b) Chromium atom, Cr

$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$	\downarrow ¢	$\downarrow \uparrow$	$\downarrow \uparrow$	\t	$\downarrow \uparrow$	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\dagger	\uparrow
1s	2s		2p		3s		3p				3d			4s	s

Chromium(III) ion, Cr^{3+}

(c) (i) Orange \rightarrow yellow
(ii) $\mathrm{Cr}+6$ (1) in both reactant and product - do not accept 6+ no change in oxidation states so not a redox reaction. (1)
(d) Add sodium hydroxide solution dropwise until there is an excess / small volume at a time until excess.

White precipitate forms with Mg but doesn't dissolve again (therefore not amphoteric).

White precipitate forms with Al then dissolves in excess NaOH (therefore amphoteric).
(e) (i)

(co-ordinate bonds can be shown as lines but are incorrect if shown as arrows from Al to Cl)

> Al is electron deficient - do not accept ' AlCl_{3} is electron deficient'
> Cl has lone pairs
(ii) Tetrahedral (1); four electron pairs and no lone pairs/ four bonding pairs (1)
Q. 2 (a) (i) $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad$ [1]
(ii) Higher efficiency / no carbon dioxide emissions / water only / no greenhouse gases / can use renewable energy resources.
Too vague - do not accept clean / no polluting gases / no global warming.
(iii) $\mathrm{A}=$ Salt bridge (1)

B = High resistance voltmeter /potentiometer (1)
C = Platinum electrodes (1)
(b) (i) $\Delta \mathrm{H}=2 \times \Delta \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)+\Delta \mathrm{H}\left(\mathrm{CO}_{2}\right)-\Delta \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$
$=2 x-286+(-394)-(-239)$ (1)
$=-727 \mathrm{~kJ} \mathrm{~mol}^{-1}(1)$
(ii) Entropy of (methanol) gas is higher than liquid (1)

So entropy change will be more negative (1)
(iii) $\Delta \mathrm{G}=-727000-(298 \mathrm{x}-81)=-703 \mathrm{~kJ} \mathrm{mo}^{-1}(1) \quad$ Allow ECF Negative $\Delta \mathrm{G}$ means reaction is feasible. (1)
Q. 3 (a) Any 2 for (1) each from:

- Measure pressure (at constant volume) over time
- Measure volume (at constant pressure) over time
- Colorimetry/ measuring colour over time

1 mark allowed if time not mentioned
(b) (i) When concentration doubles, rate doubles (1)

Therefore first order or rate is proportional to concentration (must give reason to obtain this mark) (1)

Credit possible by alternative methods:
Calculate k for each and show that all values are the same;
Calculate k for one concentration and use to calculate other values.
(ii) $\mathrm{k}=$ Rate $\div\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \quad$ e.g. $\mathrm{k}=3.00 \times 10^{-5} \div 4.00 \times 10^{-3}$ (1)
$=7.50 \times 10^{-3}(1)$ must be 3 significant figures
[3]
(iii) Rate determining step must have one $\mathrm{N}_{2} \mathrm{O}_{5}$ molecule as reactant. (1) Mechanism A matches this rate equation (1) need reason to get this mark
Accept reverse argument.
(c) (i) $\quad K_{\mathrm{F}}=\frac{P_{\mathrm{K}} \mathrm{O}_{4}}{P_{\mathrm{NO}}{ }^{1}}$
(ii) Increasing temp shifts equilibrium to left / favours endothermic reaction (1) so value of K_{p} is decreased. (1)
(iii) $\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4}=9.5 \times 10^{3} \mathrm{~Pa}$ (1)
$\mathrm{K}_{\mathrm{p}}=9.5 \times 10^{3} \div\left(2.81 \times 10^{5}\right)^{2}=1.20 \times 10^{-7}$ (1) Allow ECF Units $=\mathrm{Pa}^{-1}$ (1) Mark consequentially on answer to (c)(i)
Q. 4 (a) (i) Transition metals have partially filled d-orbitals (in atom or ion)
(ii) Iron and copper have partially filled d-orbitals in their ions, zinc does not
(b) QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate.(1)
QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter. (1)

- Ligands cause d-orbitals to split
- into 2 higher energy/ 3 lower energy
- Electrons absorb light (frequencies) to move to higher energy level
- Colour seen is colour transmitted/reflected/not absorbed
- Copper(II) complexes absorb red /orange/yellow/all colours except blue.
[MAX 4 marks from points above]
- Different ligands cause different splittings / different $\Delta \mathrm{E}$.
- Copper(I) ion has full d-orbitals.
- So electrons cannot move to upper energy levels.
[OVERALL MAX 6]
(c) (i) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
(ii) Fe oxidation state goes from +3 to 0 (1) / so it is reduced (1) OR C (not CO) oxidation state goes from +2 to +4 (1)/ so it is being oxidised. (1) Allow ECF
(iii) Stable oxidation state of (C is +4 whilst) Pb is +2 (1)

Due to inert pair effect becoming more significant down the group. (1)
(d) (i) $6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
(ii) Moles $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=23.80 \times 0.0200 \div 1000=4.76 \times 10^{-4}$ moles (1) Moles $\mathrm{Fe}^{2+}=4.76 \times 10^{-4} \times 6=2.86 \times 10^{-3}$ moles (1)
(iii) Mass Fe in sample $=2.86 \times 10^{-3} \times 10 \times 55.8=1.59 \mathrm{~g}$ (1) Percentage Iron $=1.59 \div 1.870 \times 100=85.2 \%$ (1)
Q. 5 (a) Named compound examples, need both name and use for (1)

- Sodium chlorate $(\mathrm{I})=$ bleach
- Sodium chlorate(V) = weedkiller
- PVC = windows frames/guttering/pipes/insulation for electrical wires
- Dichloromethane - solvent / paintstripper
- CFCs = refrigerants / aerosol propellants
- Aldrin / Dieldrin / DDT = Insecticides
(b) (i) $\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$
(ii) - Emf for reaction of bromide with chlorine is $+0.27 \mathrm{~V} / \mathrm{E}^{9}$ for chlorine is more positive than for bromine. (1)
- Emf for reaction of bromide with iodine is $-0.55 \mathrm{~V} / \mathrm{E}^{0}$ for iodine is less positive than for bromine. (1)
- Reactions are only feasible if Emf is positive / if E^{g} for oxidising agent is more positive than for species being oxidised. (1)
(c) (i) White precipitate with (sodium) chloride, yellow precipitate with (sodium) iodide
(ii) QWC: legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning. (1)
- NaCl: Steamy gas / bubbles (1)
- Nal: Steamy gas /smell of rotten eggs / purple vapour or brown solution or black solid / yellow solid (1 mark for 2 observations)
- NaCl: $\mathrm{NaHSO}_{4}, \mathrm{HCl} / \mathrm{Nal}: \mathrm{NaHSO}_{4} / \mathrm{HI} / \mathrm{I}_{2} / \mathrm{H}_{2} \mathrm{~S} / \mathrm{SO}_{2} / \mathrm{S} / \mathrm{H}_{2} \mathrm{O}$ (1 mark for 2 products; 2 marks for 4 products)
- lodide is easier to oxidise / iodide is a stronger reducing agent than chloride (1)
(d) (i) (Almost) completely dissociates to release H^{+}.
(ii) $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{h}^{+}\right][\mathrm{OCl}-1]}{[\mathrm{MOCl}]}$
(iii) $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$ OR pH $=-\log _{-2}\left[\mathrm{H}^{+}\right]$(1)
$\left[\mathrm{H}^{+}\right]=5.88 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}(1)$
(iv) $\quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[0 \mathrm{Cl} \mathrm{Cl}^{-1}\right]}{[\mathrm{HOCl}]}=\frac{\left(\mathrm{BOO} \times 10^{-5}\right)^{2}}{0.100}(1)=3.47 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$ (allow consequential answers)
(v) $\quad \mathrm{pH}$ above 7 (up to 10) (1)
OCl^{-}in equilibrium with $\mathrm{HOCl} / \mathrm{OCl}^{-}$will remove H^{+}from solution (1) [2]

